
 
 

Spatial Sustainability Assessment of Green Stormwater 
Infrastructure for Surface Transportation Planning,  

Phase III 
 
 

Center for Transportation, Environment, and Community Health 
Final Report 

 
 

by 
Qiong Zhang, Xiaofan Xu, Chao Ye 

 
March 31, 2021 

 
 
  



DISCLAIMER 
 
The contents of this report reflect the views of the authors, who are responsible for the facts and 
the accuracy of the information presented herein. This document is disseminated in the interest 
of information exchange. The report is funded, partially or entirely, by a grant from the U.S. 
Department of Transportation’s University Transportation Centers Program. However, the U.S. 
Government assumes no liability for the contents or use thereof. 
  



 

  TECHNICAL REPORT STANDARD TITLE 
PAGE 

1. Report No. 2.Government Accession No. 3. Recipient’s Catalog No. 
   
4.  Title and Subtitle 5.  Report Date 
Spatial Sustainability Assessment of Green Stormwater Infrastructure for 
Surface Transportation Planning, Phase III 

March 31, 2021 
6. Performing Organization Code 
 

7.  Author(s) 8. Performing Organization Report No. 
Qiong Zhang (ORCID ID # 0000-0002-1846-2735), Xiaofan Xu (ORCID 
ID # 0000-0003-3579-1888), Chao Ye 

 

9.  Performing Organization Name and Address 10. Work Unit No. 
Department of Civil and Environmental Engineering 
University of South Florida 
4202 E Fowler Ave, Tampa, FL 33620 

 
11.  Contract or Grant No. 
69A3551747119 

12.  Sponsoring Agency Name and Address 13.  Type of Report and Period Covered 
U.S. Department of Transportation 
1200 New Jersey Avenue, SE 
Washington, DC 20590 
 

Final Report 
10/1/2019 – 03/31/2021 
14.  Sponsoring Agency Code 
US-DOT 

15.  Supplementary Notes 
 
16.  Abstract 
 
Transportation authorities are responsible for managing the stormwater runoff that carries pollutants from the 
transportation-adjacent land and vehicles. The proper stormwater management approach like green infrastructure 
can help control flooding and the runoff pollutants that may impair water environment and threaten the ecosystem 
and human health. Furthermore, green infrastructure that can be applied at different spatial scales and 
decentralized arrangements, have been adopted and implemented in the transportation infrastructure design. 
However, such implementation is project-based without analysis at system level or sewer scale. A framework is 
needed to design and evaluate the integration of green stormwater infrastructure in transportations planning at 
systems level. The overall goal of the proposed project is to develop a modeling framework integrating 
hydrological simulation, water quality modeling, life cycle assessment (LCA) and cost analysis (LCCA) that can 
be used for design and planning for surface transportation with spatial implementation of green infrastructures. 
The phase III of the project developed a system-level optimization framework to determine the optimal allocation 
(i.e., location, size, and type) of GSI implementation, completed with the deliverables of a spatial optimization 
model, and a scenario analysis of runoff, water quality, environmental impacts, and cost of existing and optimized 
candidate GSI implementation. 
 
 
17. Key Words 18. Distribution Statement 
Stormwater management, Green infrastructure, Spatial 
optimization, Human health benefits, LCA, LCCA 

Public Access 

19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price 

Unclassified Unclassified 

  

Form DOT F 1700.7 (8-69)     



INTRODUCTION 
 
During intense precipitation, the stormwater drainage system 
may reach its capacity quickly that can lead to urban flooding 
and influence the performance of the connected ground 
transportation system (e.g., reduced road capacity even road 
closure). This may cause significant deterioration of mobility 
and accessibility to sites where critical activities occur (e.g., 
health care services and schools). Besides, National Pollutant 
Discharge Elimination System (NPDES) regulates that 
transportation authorities are responsible for managing the 
stormwater runoff that carries pollutants from the land adjacent 
to road transportation systems. The proper stormwater 
management can help control flooding and the runoff pollutants 
that may impair water environment and threaten the ecosystem 
and human health. Green stormwater infrastructure (GSI) is a 
stormwater management approach with many economic and 
human health benefits including: flood mitigation, erosion 
control, improved water quality, groundwater recharge, 
mitigated effect of urban heat islands, reduced energy demands 
for cooling, and enhanced aesthetics and access to green space 
(Bowen and Lynch, 2017; Demuzere et al., 2014; Wendel et al., 
2011). Unlike grey stormwater infrastructure systems that are 
often large and centralized, GSI can be designed at different 
spatial scales and implemented in decentralized arrangements 
(Suppakittpaisarn et al., 2017). GSI like basins (Belizario et al., 
2016), bioswales (Lucas et al., 2015), bioretention (Lucke and 
Nichols 2015), and constructed wetlands (Li et al., 2016) have 
been adopted and implemented in the transportation 
infrastructure design. These technologies have proven effective 
in terms of reducing runoff and pollutant loads at the individual 
site or project level. However, implementation and analysis of 
GSI at system level or urban watershed scale is generally 
lacking. As Roy et al. (2008) pointed out that “sustainable urban 
stormwater management must be planned and implemented at 

the watershed scale,” a framework is needed to design and 
evaluate the integration of GSI in transportations planning at 
system level. Such a framework can help understand the 
interaction of stormwater and transportation systems, the 
possible impact of stormwater runoff on the road network, the 
possible methods of mitigating the impacts and increasing 
resilience of both stormwater and transportation systems 
responding to disruptive events, and the environmental and 
economic benefits of sustainable stormwater management 
system with respect to runoff quantity and quality control. 

The overall goal of the proposed project is to develop a 
modeling framework integrating hydrologic simulation, water 
quality modeling, life cycle assessment (LCA) and cost analysis 
(LCCA) that can be used for design and planning for surface 
transportation with the spatial implementation of GSI. It can 
model the effect of GSI on improving flooding and water 
quality, and assess their life cycle costs and environmental and 
health impacts. The objectives of the project include (1) 
developing a method for constructing an inventory of the 
implemented GSI using Tampa as a case study area; (2) 
integrating hydrologic modeling with water quality modeling 
for scenario analysis of GSI implementation at watershed scale; 
and (3) developing a spatial optimization model for GSI 
implementation based on the integrated LCA-LCCA-
optimization framework. Corresponding to the set of objectives, 
the project is conducted in phases. The completed work in 
Phases I and II included two geographical information system 
(GIS) based methods, one for creating an inventory of existing 
GSI relevant to the road system according to GSI footprints and 
visual features, and another for determining the candidate GSI 
for future implementation with respect to GSI’s location, size, 
and type, according to the terrain, land cover, land use, and the 
necessity of stormwater control. For the case study area in 
Tampa, FL, a GIS layer of existing GSI and a GIS database of 
candidate GSI were created, which can be overlaid with 
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transportation and grey stormwater infrastructure network. In 
the reporting period, Phase III research is close to completion, 
which is working on the improvement of the hydrologic model 
and the development of an optimization framework. The trade-
off between environmental, human health, and economic 
impacts is investigated for the optimal and other scenarios of 
GSI implementation. 
 
Phase III Project  

Phase III project aims to develop a system-level optimization 
framework to determine the optimal allocation (i.e., location, 
size, and type) of GSI implementation, completed with the 
deliverables of a spatial optimization model, and a scenario 
analysis of runoff, water quality, environmental impacts, and 
cost of existing and optimized candidate GSI implementation. 
Two major activities were performed in Phase III (Figure 1). 

First, A MATLAB-based multi-objective optimization 
model using the binary genetic algorithm was established to 
identify the optimal allocation (i.e., location, size, and type) of 
GSI implementation. The optimization minimizes 
environmental, economic, and human health impacts at the 
system level associated with the construction, operation, and 
maintenance of GSI. For the case study of Tampa, the optimal 
solutions were found as a certain amount of candidate GSI 
selected with the information of location, size, and type.  

Second, the evaluation of runoff, water quality, 
environmental impacts, and cost for the optimal scenarios were 
completed using LCA, LCCA, and a SWMM-based 
hydrological model. Some discussion was made for future GSI 
planning according to the results of scenario analysis. 
 
 

 
Figure 1. The process diagram in Phase III research. 



METHODOLOGY 
 
Methodology Development 

The Phase III research were conducted into two major 
activities, including the development of an optimization model 
and an analysis of the generated optimal scenarios (Figure 1).  

The spatial optimization in this project includes three major 
components, i.e., a spatial inventory, a simulation tool, and an 
optimization tool (Figure 1).  

The spatial inventory refers to the database of candidate GSI 
that was created in Phase II research. A certain amount of 
candidate GSI were identified with location, size, and type. 
Three alternative GSI types were assigned to each candidate, 
including bioretention systems, vegetated filter strips, and 
wet/dry ponds. For each GSI type, the same technology 
configuration is adopted but the surface size at each location 
varies according to the drainage areas and infiltration rate. 
Based on the GSI’s type, configuration, surface size, and 
drainage area, the life cycle environmental impacts and costs 
were estimated for each GSI. The information about location, 
size, type, environmental impacts, and costs was saved together 
with each candidate GSI data point to create a GSI database. 
This database feeds into the optimization algorithm as the initial 
population. In addition to the candidate GSI, a framework was 
developed for creating an inventory of the implemented GSI 
that serves as the baseline of the GSI implementation.  

A simulation tool is needed to evaluate the system-level 
nitrogen discharges as the performance for each iteration in the 
optimization. SPARROW model (SPAtially-Referenced 
Regression On Watershed Attributes model; Preston & 
Brakebill, 1999) was selected as the simulation tool since the 
computation is less intensive as a statistical model and the 
calibrated model is available for the study area.  

Then, a multi-objective optimization model was developed 
to identify the optimal allocation (i.e., location, size, and type) 
of GSI implementation. The optimization minimized 
environmental, economic, and human health impacts at the 
system level associated with the construction, operation, and 
maintenance of GSI. The nutrient discharge to Tampa Bay was 
set as the constraint. The binary genetic algorithm (GA) was 
applied and implemented in MATLAB for optimization. All the 
binary GSI options lined up like a chain, i.e., the population for 
GA. With the help of the processes of selection, crossover, and 
mutation, the best fits (so-called optimal solutions) were found 
as a certain amount of candidate GSI selected and each comes 
with the set of location, size, and type.  

Eventually, the generated optimal scenarios were evaluated 
in terms of runoff, water quality, environmental impacts, and 
cost at the system level (i.e., the city scale). The environmental 
and economic impacts of the selected candidate GSI were 
estimated according to the LCA and LCCA results of individual 
GSI implementation. The city-scale runoff simulation with 
respect to candidate GSI implementation requires a fine-scale 
hydrological model. This research built and calibrated the 
SWMM hydrologic model to track the quantity and quality of 
surface runoff and to simulate the effectiveness of GSI in terms 
of runoff control based on past drainage delineation, elevation, 
land use, land cover, and the road network. 

 

Data Collection 
Table 1 summarizes the data collected for both the 

development of an optimization model and the analysis of the 
generated optimal scenarios. The deliverables of existing and 
candidate GSI datasets from Phases I and II research were 
adopted (Figures 2 and 3). All the GIS data of road system and 
stormwater management facilities were formatted as shapefiles 
and available to the public with the open data link. The reported 
street flooding provided by City of Tampa Transportation & 
Stormwater Services recorded the flooding locations during 
2015-2017. The land use of Hillsborough County and 
population data by the U.S. Census Bureau were acquired in the 
year of 2018. The raster image of Digital Elevation Models 
(DEM) by USGS has horizontal resolution of 1m by 1m and 
vertical of 0.05m. The Watershed Boundary Dataset by USGS 
defines the national hydrological boundary at six different 
geographical levels from regions to sub-watersheds. The non-
public raster image of Tampa land cover was created with a 
rule-based object-orientated classification method utilizing 
high-resolution imagery, LIDAR data and ancillary GIS data by 
USF Water Institute. It has a 1-foot-by-1-foot resolution, 
providing extremely high accuracy as a reference map. All the 
data were adjusted to the GCS_North_American_1983 
geographic coordinate system, or the 
NAD_1983_StatePlane_Florida_West_FIPS_0902_Feet 
projected coordinate system when measurement was needed. 
 
Table 1. The data used in Phase III research. 

Dataset Source 
Existing GSI 
inventory Phase I research (Xu et al., 2020) 

Candidate GSI 
database Phase II research 

Reported flooding 
spots 

Tampa Transportation & 
Stormwater Services 

Watershed Boundary 
Dataset (WBD)  U.S. Geological Survey (USGS)  Digital Elevation 
Models (DEM) 
Population (2018) U.S. Census Bureau 
Land Use of 
Hillsborough County 
(2018) 

Plan Hillsborough 
http://www.planhillsborough.org/g
is-maps-data-files/ 

Tampa land cover USF Water Institute 
Road centerline 

City of Tampa GeoHub 
http://city-tampa.opendata.arcgis. 
com/ 
 
Hillsborough County Public Works 
Department 

Stormwater inlets 
Stormwater basins 
Stormwater discharge 
points 
Stormwater detention 
areas 
Stormwater gravity 
mains 
Stormwater pressured 
mains 
Stormwater open 
drains 

http://city-tampa.opendata.arcgis.com/
http://city-tampa.opendata.arcgis.com/


Study Area 
The study area for the spatial optimization of nutrient 

management technology implementation should be: 
1. a region under flood risk; 
2. an area consisted of diverse land uses; 
3. an area has high population density, but few existing 

GSI; and 
4. an area could work as input to other hydrologic models. 

The research selected the City of Tampa as the study area, 
excluding the New Tampa Area and the Tampa International 
Airport region (Figure 2). Most of the study area is covered by 
the Middle Hillsborough River-Spillway 20 subwatershed area 
(HUC12 code: 031002050503). Figure 2 also shows the 
reported street flooding provided by the City of Tampa 
Transportation and Stormwater Services recording the flooding 
locations from 2015 to 2017.  

Spatial Nutrient-Loading Evaluation Model 
This project adopts SPARROW, short of SPAtially-

Referenced Regression On Watershed Attributes, as the spatial 
nutrient-loading evaluation model. SPARROW is a modeling 
tool for the regional interpretation of water-quality monitoring 
data developed by USGS, which is linked to a network of 
monitoring stations (Preston & Brakebill, 1999). The model is 
statistically calibrated, using equations expressed in terms of 
watershed flow paths (a network of stream reaches) and 
attributes. It uses watershed data and simple mechanistic 
features to statistically estimate the origin and fate of 
contaminants. SPARROW can estimate water quality 
conditions at both national and regional levels, addressing two 
major limitations of monitoring, including cost and geographic 
sampling bias. It can identify pollution sources including N by 
linking water quality conditions in each stream reach to 

 
Figure 2. The study area and implemented GSI detected (from Phase I) in this research. 



individual sources in each upstream reach. It has the capability 
of uncertainty analysis for monitoring design. 

The SPARROW model used in the spatial optimization was 
modified and calibrated for the nitrogen loading to the Tampa 
Bay area by Shih (2018). The SPARROW scripts can run on the 
platform of SAS, requiring about 20-min computing time for a 
single iteration. 

 
Optimization Model 

This project developed a multi-objective optimization model 
for GSI implementation in terms of nutrient management. The 
optimization model was used to determine the implementation 
of the GSI, i.e., location, type, and surface size and drainage 
area. The model minimized the total weighted environmental 
impacts and life cycle costs associated with the construction, 
operation, and maintenance phases to capture the 

environmental, human health, and economic impacts of the 
system design. The optimization model was coded in MATLAB 
with the genetic algorithm (GA) optimizer. 

 
Objective Functions 
The proposed mathematical formulation consisted of two 

objective functions. The first objective function (Equation 1) 
minimized the total weighted environmental impacts associated 
with GSI’s installation and operation, based on the impacts of 
eutrophication (EU), global warming potential (GWP), and 
ecotoxicity (ET) normalized by GSI surface area.  

 

 

 
Figure 3. The candidate GSI identified in Phase II research. 



Weighting factors were added to each impact category in 
order to obtain the total weighted environmental impacts; 
specifically, the weighting factors were acquired from Gloria et 
al. (2007) and the values for 𝑤𝑤𝐸𝐸𝐸𝐸 , 𝑤𝑤𝐺𝐺𝐺𝐺𝐺𝐺 , and 𝑤𝑤𝐸𝐸𝐸𝐸  are 0.072, 
0.084, and 0.349, respectively. The weighting scheme was 
judged by voting interest from stakeholders like producers, 
users, and LCA experts at three different time horizons (i.e., 
short term as 24%, medium term as 31%, and long term as 45%; 
Gloria et al., 2007). This objective function also considered the 
contribution of drainage area (DA). A binary option for each 
GSI (𝑝𝑝𝑘𝑘𝑘𝑘) was added in the function to determine whether the 
GSI facility is selected or not.  

The second objective function (Equation 2) minimized the 
total costs including the life cycle cost (LCC), land use cost 
(LU), expressed as the slope of cost over GSI surface area, and 
the credits from the saving cost of nitrogen treatment (SN) by 
GSI, expressed as the slope of cost over GSI drainage area. 

 

 
 
The definition of each parameter can be found in Table 1. 
 

Table 1. The nomenclature in the spatial optimization. 
Nomenclature Description 
Set 

 

k Set of candidate sites for GSI 
t  Set of types of GSI 
Parameter 

 

DA_k drainage area of GSI at location k 
Imp_k Impervious percentage according to land 

use at location k 
Inf_k Infiltration rate according to land cover at 

location k 
w Weight of impact categories to total impact 
LCC_kt Cost rate of construction of a GSI over 

surface area with type t at location k 
LU_k Cost rate of land use over surface area at 

location k 
SN_kt Credit rate of saving cost from nitrogen 

treatment by GSI over drainage area with 
type t compared to WWTP at location k  

NP_kt Removal rate of nitrogen by GSI with type 
t at location k 

n_kt Life time of a GSI facility with type t at 
location k 

Variable 
 

p_kt A zero/one variable that equals 1 if GSI 
implemented with type t at location k is 
selected, 0 otherwise 

 

Optimization Algorithm 
Each GSI was assigned with its location, size, type, 

environmental impacts, and cost, and each GSI works as a 
binary option, selected or not. All the binary GSI options 
initialized the population for GA, like a DNA chain. The length 
of the DNA chain is the amount of potential GSI. For each 
generation, some GSI are selected (marked as 1 in the DNA 
chain) and some are not (marked as 0). Some rules (i.e., 
selection, crossover, and mutation) help GA to produce the next 
generation. At each iteration, the GA selects individual GSI 
options (like a partial DNA chain) at random from the 
population to be parents and uses them to produce the children 
(a combination of partial DNA chains from parents) for the next 
generation. That is the process of selection and crossover. This 
optimization algorithm chooses the current and previous chains 
as parents, and uses single-point crossover that randomly picks 
a point on both parents’ GSI chains. The portion on the right of 
that point is swapped between the two parent DNA chains. This 
results in two offspring, each carrying some genetic information 
from both parents. The two children chains will then be 
evaluated in terms of the fitness at individual iteration and the 
one with higher fitness will survive to produce the next 
generation. In addition, the rule of mutation applies random 
changes in the next generation. In the algorithm, a random 
number less than 10 of any GSI options were switched either 
from 0 to 1 or from 1 to 0 after the selection and crossover at 
each iteration. Each generation is simulated using the 
SPARROW model to evaluate its fitness until the given 
iterations are completed and the best fit is found. The Twain 
Shall Meet tool (Shvorob, 2020) was used as the data exchanger 
between SAS (the SPARROW’s platform) and MATLAB (the 
optimization’s platform).  

In the fitness evaluation, the nutrient discharge to Tampa Bay 
at each generation is modeled and compared to the constraint; 
the generation fails if the nutrient discharge exceeds the 
constraint. For those generations that pass the constraint, the life 
cycle costs and weighted environmental impacts are used for 
fitness evaluation. Finally, an optimal allocation (or best fit) of 
existing and candidate GSI implementation is found from the 
spatial optimization model. 

The multi-objective optimization was fulfilled using the 
solver gamultiobj function from the Global Optimization 
Toolbox in MATLAB. The gamultiobj function is designed to 
find the Pareto front (i.e., a set of points in the space of decision 
variables that have noninferior fitness function values) using 
GA. The gamultiobj solver can return the final population and 
its scores (objective values) with the inputs of the fitness 
function, the number of variables, and the bound constraints. 
The fitness function was set to kur_multiobjective.m function 
that computes two objectives (MathWorks, 2007). Table 2 lists 
the inputs and their values used in the optimization function.  

 
  



Table 2. Inputs used in the optimization function in 
MATLAB. 

Input Description Value 

fitnessfcn Fitness functions kur_multiobjective 

nvars Number of design 
variables 

3 

A A matrix for linear 
inequality constraints 

ones(1,268) 

b b vector for linear 
inequality constraints 

1 

nonlcon Nonlinear constraint 
function 

Output from 
SPARROW 

solver Optimization solver 'gamultiobj' 

options Options created 
using optimoptions 

MaxGenerations=5
00 

 
Scenario Analysis 

The analysis of runoff, water quality, environmental impacts, 
and cost for the optimal scenarios were completed using LCA, 
LCCA, and a SWMM-based hydrological model.  

 
Environmental and Economic Impacts 
Life cycle assessment (LCA) was used to evaluate the 

environmental impacts of the implemented and candidate GSI. 
The LCA in this project follows the ISO 14044 (2006) standard, 
containing four primary steps: goal and scope definition, 
inventory analysis, impact assessment, and interpretation. In 
terms of the life cycle of a full-scale GSI, the construction and 
operation and maintenance (O&M) stages were considered 
within the system boundary, including the processes of 
manufacturing, transportation, installation, and maintenance. 
The design for each type, i.e., bioretention systems, vegetated 
filter strips, and dry ponds, follows the best water quality 
performance configuration in the work of Xu and Zhang (2019), 
Hunt et al. (2009), and Shammaa et al. (2002), respectively, 
which guides the development of the life cycle inventory for 
each type. The lifetime of a bioretention system was assumed 
to be 15 years, vegetated filter strips be 20 years, and dry ponds 
be 30 years. 

The LCA was conducted with the SimaPro PhD software 
(version 8.0) by PRé Consultants. The Tool for Reduction and 
Assessment of Chemicals and Other Environmental Impacts 
(TRACI) version 2.1 by the USEPA was used for the 
assessment. The impact categories analyzed include 
eutrophication, ecotoxicity, and global warming potential.  

Each GSI was calculated and assigned with the impact values 
of eutrophication, ecotoxicity, and global warming potential, 
based on its surface area using the regression model. 
Eventually, the environmental impacts were normalized with 
respect to the function unit (FU) of 1 kg TN removed, since the 
study targeted on nitrogen as the primary nutrient responsible 
for eutrophication in coastal areas (Howarth & Marino 2006). 

The life cycle cost (LCC) in this project, included the capital 
cost, routine maintenance cost, corrective maintenance cost, 
and the electricity cost involved in the construction and 

maintenance. The LCC as net present value (NPV) was 
calculated by discounting all the costs mentioned above to 
present values. The discount rate was assumed to be 5%. 
Similarly, the regression model was developed to estimate LCC 
based on the GSI surface area. Each GSI was calculated and 
assigned with the LCC calculated using the regression model 
and GSI’s surface area.  

 
Runoff Control 
In this project, the EPA SWMM model is selected for 

hydrologic runoff simulation. SWMM can track the quantity 
and quality of surface runoff during precipitation and is suitable 
for large study area modeling and simulation. SWMM 
categorizes most of the physical objects in the model into three 
groups: subcatchments (polygons), nodes (points), and links 
(lines). Subcatchments refer to physical areas of land, with data 
such as land use and slope being factored into the model. Nodes 
can be representative of a number of stormwater infrastructures 
such as inlets, discharge points, and storage units. Links are 
used to represent things such as pipes, open channels, and weirs. 
Other parameters such as temperature and evaporation rates are 
entered into the model separately from the physical objects. 

Subcatchments in the model were delineated based on the 
land use data, road network, digital elevation (DEM), and 
existing stormwater basins. The processes using ArcGIS 
geoprocessing tools are summarized in Figure 4a with the input 
values from Tables 3 and 4.  

 
Table 3. The inputs and values for the geoprocessing tools used 
for subcatchment simplification process. 

Geoprocessing 
tool Inputs and values 

Select by Attribute Field: ROADCLASS 
Attribute: Local 

Dissolve Field: FULLNAME 
Uncheck “Create multipart features” 

Intersect Output Type: POINT 

Clip Input: Dissolved Roads 
Clip Feature: Intersect Points 

Erase Input Feature: AOI 
Erase Feature: Buffered Roads 

Buffer Buffer Roads based on values in 
Table 3 

Select by Attribute Fields: Not Classified & Public 

Spatial Join Target: Integrated Polygons 
Join: HC Existing Land Use 
Join One-to-One 
Check Keep all Target Features 
Merge Rule for LU Type: Mode 

 
  



  

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 4. The subcatchment delineation process (a), The determination process of subcatchment routing (b), and the 
determination process of flow direction in the links used in the SWMM model development.  



Table 4. Road buffer criterion. 

Road type Lanes 
Shoul-

der/bike 
Buffered 
width/ft 

Total 
width/ft 

Local 1/side 4 16 32 

Freeway 2/side  28 56 

Collector 2/side 6 30 60 

Minor 
arterial 2/side 6+6 36 72 

Neighborhood 
collector 1/side 4 16 32 

Principal 
arterial 3/side  54 108 

Ramp  1/side  14 28 

Right of 
way 

Max 50ft 
width  25 50 

 
The parameters of each subcatchment such as slope, 

impervious rate, area and width can be calculated and joined to 
the attribute table in ArcMap. As for other infiltration 
parameters, the values were obtained based on SWMM User 
Manual. The details are summarized in Table 5. 

 
Table 5. The parameters for each subcatchment. 

Parameter Values and Methods 

Rain Gage Multi-rain gages 

Area Calculate Area Tool in ArcGIS 

Characteristic Width Calculate Field: 
4*area/perimeter 

% Slope Slope tool with DEM raster; 
average slope for each polygon 
(subcatchment) 

% Impervious Calculate Field based on 
assumed values 

Mannings Number for 
impervious/pervious area 

Assume based on SWMM User 
Manual 

Depth of depression 
storage for 
impervious/pervious area 

0.05 in/ 0.1 in 

% of impervious area 
with no depression 
storage 

Use default value of 25% 

Subarea routing Outlet 

Infiltration Green Ampt 

Snow Pack None 

 
Nodes are one of the major objects in SWMM. In this project, 

junctions (inlets, all points at intersection), outfalls (discharge 

points), and storage units (detention/retention ponds) nodes 
were considered. For junctions, all points were merged into one 
layer and given a unique name. The same process did for 
outfalls and storage units. The determination process of surface 
runoff routing for each subcatchment is summarized in Figure 
4b. The main required parameters for junctions and outfalls are 
invert elevation, which is the bottom elevation of the structure. 
Most of the points in the dataset do not have information for 
invert elevation. For those points, the elevation of the ground at 
each point was extracted as an attribute using the Extract by 
Points tool and the invert elevation was determined by 
subtracting the distance to ground value from the elevation of 
each point. 

For the storage units, some of the detention ponds have their 
name in the attribute table which can be searched online to find 
their basic information. For those that do not have information, 
an average value was selected according to the SWMM User 
Manual. Besides, both Initial Depth and Surcharge Depth were 
assumed to be 0. Initial Depth was set to be 0 assuming that 
there was no significant rainfall before the simulations. The 
surcharge depth is a parameter representing the additional depth 
a junction can fill up before it floods, which is used to simulate 
manholes or pressurized mains. This was assumed to be 0 to 
investigate the effect of green infrastructures on runoff control. 

Links in the model are used to represent pipes and channels 
that carry the stormwater from node to node. Therefore, the 
most important parameters of Links are the nodes they are 
connecting. Some of the links in the dataset contain the 
information. For the links that do not have the information, the 
process in Figure 4c was used to help determine the flow 
direction in the links. 

After all the parameters been calculated and joined in 
ArcGIS, the information was saved as shapefiles. A R package 
named ‘swmmr’ was used to rewrite the data in the shapefiles 
into SWMM input file. 
 
 
OPTIMAL SCENARIO GENERATION AND ANALYSIS 
 
Best-fit Solutions from Five Trials 

The optimization model is set to run 500 iterations for every 
trial. Five trials were conducted and five different optimal 
solutions were found (marked as Opt 1 to Opt 5). GA is 
designed to search the solution with the best fitness and that is 
why the best-fit solutions in each trial were different from each 
other. Figure 5 shows the optimal solution of GSI allocation in 
Trial 1 (Opt 1).  

 
Statistical Analysis 

For all the five trials, the selected candidate GSI are 
relatively evenly distributed within the study area. Table 6 
summarized the amount of GSI of different types in each 
optimal solution. The total amounts of GSI are almost the same 
for all the five solutions, varying from 50 to 52. The similarity 
of the total GSI amount in optimal solutions may be due to the 
minimization of total costs. The selection of a certain GSI type 
has larger variation, i.e., 12 to 19 for bioretention systems, 25 
to 34 for vegetated filter strips, and 5 to 9 for dry ponds. Opt 1 
selected most bioretention systems (19 counts) but fewer dry 
ponds (6 counts), while Opt 2 selected most dry ponds (9 



counts) but fewer bioretention systems (14 counts). Although 
the amount of bioretention systems in the database is higher 
than vegetated filter strips (156 vs. 129), vegetated filter strips 
were selected more in the optimal solutions than bioretention 
systems. The reason may be that the bioretention system has an 
additional internal water storage zone (IWSZ) that requires 
more input on installation and maintenance, and makes it more 
expensive than the vegetated filter strip for the same surface 
size ($103.1/ft2 for the bioretention system vs. $87.2/ft2 for the 
vegetated filter strips).  
 
 

Table 6. The amount of GSI in each optimal solution. 

GSI type  

Data-
base 

Optimal solution 
Opt 

1 
Opt 
2 

Opt 
3 

Opt 
4 

Opt 
5 Average 

Bioretention 
system 

156 19 14 13 12 17 15 

Vegetated 
filter strip 

129 25 29 34 31 27 29.2 

Dry pond 83 6 9 5 8 6 6.8 

Total 368 50 52 52 51 50 51 

 
Figure 5. The optimal solution of green stormwater infrastructure (GSI) allocation in Opt 1. 



Table 7 introduces the average drainage area of the selected 
GSI in each optimal solution. The average drainage area of each 
type has relatively low variation across all the five solutions. 
However, the total area for each solution has a larger variation 
from each other, as low as 13.6 million ft2 in Opt 3 and as high 
as 16.2 million ft2 in Opt 2. It is basically because of the amount 
of dry ponds selected in each solution since dry ponds have 
much larger drainage areas (average as 0.87 million ft2) than the 
other two types. Though the average drainage area of 
bioretention systems and vegetated filter strips are similar in the 
database, the bioretention systems selected in the optimal 
solutions are much larger than vegetated filter strips (averagely 
271.52 vs. 172.34 thousand ft2). Bioretention systems have 
better nitrogen removal performance due to the additional 
IWSZ and contribute more to the reduction of environmental 
impacts. It means that the larger bioretention systems (i.e., 
larger surface area) are preferred that might be attributed to their 
high cost-effectiveness on impact reduction (about $7.9 per 
point of weighted impact reduced for bioretention systems, 
$8.2/point for vegetated filter strips, $10.1/point for dry ponds).  
 
Environmental and Economic Impacts 

The weighted normalized environmental impacts of each 
optimal solution are calculated with the unit of millionpoints (a 
dimensionless unit for weighted impacts; Gloria et al., 2007) in 
Figure 6.  

 

 
Figure 6. The weighted normalized environmental impacts of 
each optimal solution. 

In Figure 6, eutrophication has the highest weighted impact 
followed by ecotoxicity. There is a minor difference between 
the five optimal solutions in each impact category but all the 
five solutions achieved the same total impacts.  

Figure 7 summarized the annualized net present values of 
each optimal solution. The life cycle cost of the GSI facilities is 
the major contributor to the total cost. The credits saved from 
the nitrogen treatment by GSI contributed about 4% deduction 
to the total cost. Similar to the results of weighted 
environmental impacts, there is a minor difference between the 
five optimal solutions in each cost category but all the five 
solutions achieved the same total costs.  

 

 
Figure 7. The annualized net present values (ANPV) of each 
optimal solution. 

 
GSI Distribution in the Optimal Solutions 

Kolmogorov–Smirnov test (K-S test) was used to examine 
whether the GSI distribution in the optimal solutions follows 
any pattern or not. One-sample K-S test examines the goodness 
of fit of a given set of data to a theoretical distribution (Berger 
& Zhou, 2014). Each optimal trial was tested, and the 
distribution of the distances between each GSI and its closest 
GSI was compared with normal distribution as the reference. If 
the GSI distances follow the normal distribution, it means GSIs 
in the optimal solutions are distributed randomly, and there is 
no specific distribution pattern for the optimal GSI allocation.  

The data points of the distances between each GSI and its 
closest neighbor in the optimal solutions can be exported from 

Table 7. The average drainage area of green stormwater infrastructure (GSI) in each optimal solution. 

GSI Type  

Database  
(1000 ft2) 

Optimal solution (1000 ft2) 

Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Average 
Bioretention system 143.8 257.4 274.1 278.2 280.4 267.5 271.52 

Vegetated filter 
strip 

150.3 187.5 167.8 161.7 166.3 178.4 172.34 

Dry pond 601.3 873.4 842.2 914.1 856.1 871.9 871.54 

Total Area 91729.4 14818.5 16283.4 13684.9 15368.9 14595.7 14950.28 

 



ArcGIS to Excel using the geoprocessing tool. Then the data 
points are examined using the ks.test function in R. The outputs 
from R include D value (Kolmogorov–Smirnov statistic) and p 
value. Each optimal solution’s outputs are summarized in Table 
8. 

 
Table 8. The Kolmogorov–Smirnov test results for each 
optimal solution. 

Optimal 
solution D p 

Random distribution  
(p < 0.05)? 

Opt 1 0.347 0.742 No 
Opt 2 0.271 0.651 No 
Opt 3 0.198 0.629 No 
Opt 4 0.331 0.683 No 
Opt 5 0.284 0.675 No 

 
According to the K-S test results in Table 8, all the five 

optimal solutions do not follow a random distribution, 
indicating there is a certain distribution pattern of GSIs in the 
optimal solutions.  

A series of two-sample K-S tests were also used to examine 
whether the different optimal solutions follow the same type of 
distribution. Table 9 shows the p values of the two-sample K-S 
tests between every two optimal solutions. All the p values in 
the test results are larger than 0.05, indicating all the optimal 
solutions follow the same type of distribution. 
 
Table 9. The Kolmogorov–Smirnov test results (p values) 
between every two optimal solutions. 

 Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 

Opt 1 - 0.538 0.377 0.519 0.493 

Opt 2 0.538 - 0.421 0.361 0.445 

Opt 3 0.377 0.421 - 0.396 0.404 

Opt 4 0.519 0.361 0.396 - 0.578 

Opt 5 0.493 0.445 0.404 0.578 - 

 
 

CONCLUSION 
 

The Phase III research makes contribution to optimizing 
candidate GSI and modeling the runoff with GSI 
implementation in a large spatial scale, which are challenges in 
current surface transportation planning and stormwater 
management. The methods developed for solving these two 
issues also provide the decision support for improving and 
optimizing the stormwater management system in surface 
transportation planning, and both of them are transferrable to 
other locations.  

The optimization minimizes environmental, economic, and 
human health impacts at the system level associated with the 
construction, operation, and maintenance of GSI. For the case 
study of Tampa, the optimal solutions were found as a certain 
amount of candidate GSI selected with the information of 
location, size, and type. The candidate GSI in the optima can 

effectively lower the nutrient discharge to Tampa Bay below 
the limits, with the minimal environmental and economic 
impacts of the implementation of the candidate GSI. Besides, 
this project shows that some features of the road transportation 
system like its low terrain and high impervious rate are key 
factors to determine the location and type of candidate GSI.  
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